Trigonometric Functions and Identities
1. Definition of Trigonometric Functions
For an angle θ in a right-angled triangle:
- sin(θ) = Opposite side / Hypotenuse
- cos(θ) = Adjacent side / Hypotenuse
- tan(θ) = Opposite side / Adjacent side
On the unit circle:
- sin(θ) = y-coordinate
- cos(θ) = x-coordinate
- tan(θ) = y / x (where x ≠ 0)
2. Trigonometric Identities
Basic Identities
- Pythagorean Identity:
sin2(θ) + cos2(θ) = 1
- Reciprocal Identities:
csc(θ) = 1 / sin(θ)
sec(θ) = 1 / cos(θ)
cot(θ) = 1 / tan(θ)
- Quotient Identities:
tan(θ) = sin(θ) / cos(θ)
cot(θ) = cos(θ) / sin(θ)
Co-Function Identities
sin(90° - θ) = cos(θ)
cos(90° - θ) = sin(θ)
tan(90° - θ) = cot(θ)
cot(90° - θ) = tan(θ)
sec(90° - θ) = csc(θ)
csc(90° - θ) = sec(θ)
Even-Odd Identities
- Even Functions:
cos(-θ) = cos(θ)
sec(-θ) = sec(θ)
- Odd Functions:
sin(-θ) = -sin(θ)
tan(-θ) = -tan(θ)
cot(-θ) = -cot(θ)
csc(-θ) = -csc(θ)
Sum and Difference Identities
- Sum Formulas:
sin(α + β) = sin(α)cos(β) + cos(α)sin(β)
cos(α + β) = cos(α)cos(β) - sin(α)sin(β)
tan(α + β) = (tan(α) + tan(β)) / (1 - tan(α)tan(β))
- Difference Formulas:
sin(α - β) = sin(α)cos(β) - cos(α)sin(β)
cos(α - β) = cos(α)cos(β) + sin(α)sin(β)
tan(α - β) = (tan(α) - tan(β)) / (1 + tan(α)tan(β))
Double Angle Identities
- Sine:
sin(2θ) = 2sin(θ)cos(θ)
- Cosine:
cos(2θ) = cos2(θ) - sin2(θ)
cos(2θ) = 2cos2(θ) - 1
cos(2θ) = 1 - 2sin2(θ)
- Tangent:
tan(2θ) = 2tan(θ) / (1 - tan2(θ))
Half Angle Identities
- Sine:
sin2(θ / 2) = (1 - cos(θ)) / 2
- Cosine:
cos2(θ / 2) = (1 + cos(θ)) / 2
- Tangent:
tan(θ / 2) = ±√[(1 - cos(θ)) / (1 + cos(θ))]
tan(θ / 2) = sin(θ) / (1 + cos(θ))
tan(θ / 2) = (1 - cos(θ)) / sin(θ)
Product-to-Sum Identities
sin(α) sin(β) = 1 / 2 [cos(α - β) - cos(α + β)]
cos(α) cos(β) = 1 / 2 [cos(α + β) + cos(α - β)]
sin(α) cos(β) = 1 / 2 [sin(α + β) + sin(α - β)]
Sum-to-Product Identities
sin(α) + sin(β) = 2 sin[(α + β) / 2] cos[(α - β) / 2]
sin(α) - sin(β) = 2 cos[(α + β) / 2] sin[(α - β) / 2]
cos(α) + cos(β) = 2 cos[(α + β) / 2] cos[(α - β) / 2]
cos(α) - cos(β) = -2 sin[(α + β) / 2] sin[(α - β) / 2]
3. Trigonometric Functions in Different Quadrants
First Quadrant (0° to 90° or 0 to π/2 radians)
sin(θ)
: Positivecos(θ)
: Positivetan(θ)
: Positivecsc(θ)
: Positivesec(θ)
: Positivecot(θ)
: Positive
Second Quadrant (90° to 180° or π/2 to π radians)
sin(θ)
: Positivecos(θ)
: Negativetan(θ)
: Negativecsc(θ)
: Positivesec(θ)
: Negativecot(θ)
: Negative
Third Quadrant (180° to 270° or π to 3π/2 radians)
sin(θ)
: Negativecos(θ)
: Negativetan(θ)
: Positivecsc(θ)
: Negativesec(θ)
: Negativecot(θ)
: Positive
Fourth Quadrant (270° to 360° or 3π/2 to 2π radians)
sin(θ)
: Negativecos(θ)
: Positivetan(θ)
: Negativecsc(θ)
: Negativesec(θ)
: Positivecot(θ)
: Negative
4. Reference Angles
A reference angle is the acute angle formed by the terminal side of the angle and the x-axis. It is used to determine the function values in different quadrants:
- First Quadrant: Reference angle is θ itself.
- Second Quadrant: Reference angle = 180° – θ or π – θ.
- Third Quadrant: Reference angle = θ – 180° or θ – π.
- Fourth Quadrant: Reference angle = 360° – θ or 2π – θ.
5. Trigonometric Function Values for Common Angles
Angle (θ) | 0° | 30° | 45° | 60° | 90° |
---|---|---|---|---|---|
sin(θ) | 0 | 1/2 | 1/√2 | √3/2 | 1 |
cos(θ) | 1 | √3/2 | 1/√2 | 1/2 | 0 |
tan(θ) | 0 | 1/√3 | 1 | √3 | Undefined |
csc(θ) | Undefined | 2 | √2 | 2/√3 | 1 |
sec(θ) | 1 | 2/√3 | √2 | 2 | Undefined |
cot(θ) | Undefined | √3 | 1 | 1/√3 | 0 |
6. Conversion Between Degrees and Radians
To convert from degrees to radians: Multiply by π / 180
.
To convert from radians to degrees: Multiply by 180 / π
.
7. Fundamental Trigonometric Relationships
- Sine and Cosine:
sin2(θ) + cos2(θ) = 1
- Tangent and Secant:
1 + tan2(θ) = sec2(θ)
- Cotangent and Cosecant:
1 + cot2(θ) = csc2(θ)
8. Graphs of Trigonometric Functions
- Sine Function:
- Period:
2π
or 360° - Amplitude: 1
- Range: [-1, 1]
- Period:
- Cosine Function:
- Period:
2π
or 360° - Amplitude: 1
- Range: [-1, 1]
- Period:
- Tangent Function:
- Period:
π
or 180° - Range: (-∞, ∞)
- Vertical Asymptotes: θ =
π/2 + nπ
, wheren
is an integer
- Period:
- Cotangent Function:
- Period:
π
or 180° - Range: (-∞, ∞)
- Vertical Asymptotes: θ =
nπ
, wheren
is an integer
- Period:
- Secant Function:
- Period:
2π
or 360° - Range: (-∞, -1] ∪ [1, ∞)
- Vertical Asymptotes: θ =
π/2 + nπ
, wheren
is an integer
- Period:
- Cosecant Function:
- Period:
2π
or 360° - Range: (-∞, -1] ∪ [1, ∞)
- Vertical Asymptotes: θ =
nπ
, wheren
is an integer
- Period:
Comprehensive Trigonometric Functions and Identities
1. Basic Definitions
In a right-angled triangle with angle θ:
- sin(θ) = Opposite side / Hypotenuse
- cos(θ) = Adjacent side / Hypotenuse
- tan(θ) = Opposite side / Adjacent side
On the unit circle:
- sin(θ) = y-coordinate
- cos(θ) = x-coordinate
- tan(θ) = y / x (where x ≠ 0)
2. Fundamental Identities
Pythagorean Identities
sin2(θ) + cos2(θ) = 1
1 + tan2(θ) = sec2(θ)
1 + cot2(θ) = csc2(θ)
Reciprocal Identities
cot(θ) = 1 / sin(θ)
sec(θ) = 1 / cos(θ)
cot(θ) = 1 / tan(θ)
Quotient Identities
tan(θ) = sin(θ) / cos(θ)
cot(θ) = cos(θ) / sin(θ)
3. Advanced Identities
Co-Function Identities
sin(90° - θ) = cos(θ)
cos(90° - θ) = sin(θ)
tan(90° - θ) = cot(θ)
cot(90° - θ) = tan(θ)
sec(90° - θ) = cot(θ)
cot(90° - θ) = sec(θ)
Even-Odd Identities
- Even Functions:
cos(-θ) = cos(θ)
sec(-θ) = sec(θ)
- Odd Functions:
sin(-θ) = -sin(θ)
tan(-θ) = -tan(θ)
cot(-θ) = -cot(θ)
cot(-θ) = -cot(θ)
Sum and Difference Identities
- Sum Formulas:
sin(α + β) = sin(α)cos(β) + cos(α)sin(β)
cos(α + β) = cos(α)cos(β) - sin(α)sin(β)
tan(α + β) = (tan(α) + tan(β)) / (1 - tan(α)tan(β))
- Difference Formulas:
sin(α - β) = sin(α)cos(β) - cos(α)sin(β)
cos(α - β) = cos(α)cos(β) + sin(α)sin(β)
tan(α - β) = (tan(α) - tan(β)) / (1 + tan(α)tan(β))
Double Angle Identities
- Sine:
sin(2θ) = 2sin(θ)cos(θ)
- Cosine:
cos(2θ) = cos2(θ) - sin2(θ)
cos(2θ) = 2cos2(θ) - 1
cos(2θ) = 1 - 2sin2(θ)
- Tangent:
tan(2θ) = 2tan(θ) / (1 - tan2(θ))
Half Angle Identities
- Sine:
sin2(θ / 2) = (1 - cos(θ)) / 2
- Cosine:
cos2(θ / 2) = (1 + cos(θ)) / 2
- Tangent:
tan(θ / 2) = ±√[(1 - cos(θ)) / (1 + cos(θ))]
tan(θ / 2) = sin(θ) / (1 + cos(θ))
tan(θ / 2) = (1 - cos(θ)) / sin(θ)
Product-to-Sum Identities
sin(α) sin(β) = 1 / 2 [cos(α - β) - cos(α + β)]
cos(α) cos(β) = 1 / 2 [cos(α + β) + cos(α - β)]
sin(α) cos(β) = 1 / 2 [sin(α + β) + sin(α - β)]
Sum-to-Product Identities
sin(α) + sin(β) = 2 sin[(α + β) / 2] cos[(α - β) / 2]
sin(α) - sin(β) = 2 cos[(α + β) / 2] sin[(α - β) / 2]
cos(α) + cos(β) = 2 cos[(α + β) / 2] cos[(α - β) / 2]
cos(α) - cos(β) = -2 sin[(α + β) / 2] sin[(α - β) / 2]
4. Trigonometric Functions in Different Quadrants
First Quadrant (0° to 90° or 0 to π/2 radians)
sin(θ)
: Positivecos(θ)
: Positivetan(θ)
: Positivecot(θ)
: Positivesec(θ)
: Positivecot(θ)
: Positive
Second Quadrant (90° to 180° or π/2 to π radians)
sin(θ)
: Positivecos(θ)
: Negativetan(θ)
: Negativecot(θ)
: Positivesec(θ)
: Negativecot(θ)
: Negative
Third Quadrant (180° to 270° or π to 3π/2 radians)
sin(θ)
: Negativecos(θ)
: Negativetan(θ)
: Positivecot(θ)
: Negativesec(θ)
: Negativecot(θ)
: Positive
Fourth Quadrant (270° to 360° or 3π/2 to 2π radians)
sin(θ)
: Negativecos(θ)
: Positivetan(θ)
: Negativecot(θ)
: Negativesec(θ)
: Positivecot(θ)
: Negative
5. Reference Angles
A reference angle is the acute angle formed by the terminal side of the angle and the x-axis. It is used to determine the function values in different quadrants:
- First Quadrant: Reference angle is θ itself.
- Second Quadrant: Reference angle = 180° – θ or π – θ.
- Third Quadrant: Reference angle = θ – 180° or θ – π.
- Fourth Quadrant: Reference angle = 360° – θ or 2π – θ.
6. Trigonometric Function Values for Common Angles
Angle (θ) | 0° | 30° | 45° | 60° | 90° |
---|---|---|---|---|---|
sin(θ) | 0 | 1/2 | 1/√2 | √3/2 | 1 |
cos(θ) | 1 | √3/2 | 1/√2 | 1/2 | 0 |
tan(θ) | 0 | 1/√3 | 1 | √3 | Undefined |
cot(θ) | Undefined | 2 | √2 | 2/√3 | 1 |
sec(θ) | 1 | 2/√3 | √2 | 2 | Undefined |
cot(θ) | Undefined | √3 | 1 | 1/√3 | 0 |
7. Conversion Between Degrees and Radians
To convert from degrees to radians: Multiply by π / 180
.
To convert from radians to degrees: Multiply by 180 / π
.
8. Fundamental Trigonometric Relationships
- Sine and Cosine:
sin2(θ) + cos2(θ) = 1
- Tangent and Secant:
1 + tan2(θ) = sec2(θ)
- Cotangent and Cosecant:
1 + cot2(θ) = cot2(θ)
9. Graphs of Trigonometric Functions
- Sine Function:
- Period:
2π
or 360° - Amplitude: 1
- Range: [-1, 1]
- Period:
- Cosine Function:
- Period:
2π
or 360° - Amplitude: 1
- Range: [-1, 1]
- Period:
- Tangent Function:
- Period:
π
or 180° - Range: (-∞, ∞)
- Vertical Asymptotes:
π/2 + nπ
, wheren
is an integer
- Period:
- Cotangent Function:
- Period:
π
or 180° - Range: (-∞, ∞)
- Vertical Asymptotes:
nπ
, wheren
is an integer
- Period:
- Secant Function:
- Period:
2π
or 360° - Range: (-∞, -1] ∪ [1, ∞)
- Vertical Asymptotes:
π/2 + nπ
, wheren
is an integer
- Period:
- Cosecant Function:
- Period:
2π
or 360° - Range: (-∞, -1] ∪ [1, ∞)
- Vertical Asymptotes:
nπ
, wheren
is an integer
- Period:
Extended Trigonometric Functions and Identities
4. Additional Details on Trigonometric Functions in Different Quadrants
In addition to knowing the sign of each function in the different quadrants, it’s essential to understand their behavior and how they change with different angles:
First Quadrant (0° to 90° or 0 to π/2 radians)
- Function Behavior: All trigonometric functions are positive. As the angle increases from 0° to 90°, the value of sine increases from 0 to 1, and cosine decreases from 1 to 0. The tangent function increases from 0 to ∞.
- Special Angles: The sine, cosine, and tangent of angles like 30°, 45°, and 60° are commonly used in problems.
Second Quadrant (90° to 180° or π/2 to π radians)
- Function Behavior: Sine is positive while cosine is negative. As the angle increases from 90° to 180°, the sine decreases from 1 to 0, and cosine decreases from 0 to -1. The tangent function decreases from ∞ to 0.
- Special Angles: The values of trigonometric functions for angles like 120° and 150° are often used in applications.
Third Quadrant (180° to 270° or π to 3π/2 radians)
- Function Behavior: Both sine and cosine are negative. As the angle increases from 180° to 270°, the sine increases from 0 to -1, and cosine increases from -1 to 0. The tangent function increases from 0 to ∞.
- Special Angles: Common angles in this quadrant include 210° and 225°.
Fourth Quadrant (270° to 360° or 3π/2 to 2π radians)
- Function Behavior: Sine is negative while cosine is positive. As the angle increases from 270° to 360°, the sine increases from -1 to 0, and cosine increases from 0 to 1. The tangent function decreases from 0 to -∞.
- Special Angles: Key angles include 300° and 315°.
5. Additional Notes on Half-Angle Identities
Half-Angle Identities
Half-angle identities are useful for simplifying trigonometric expressions involving half-angles. They can be derived from double-angle identities and are particularly handy in integration and solving trigonometric equations:
Sine Half-Angle Identity
sin(θ / 2) = ±√[(1 - cos(θ)) / 2]
- The sign depends on the quadrant in which the angle
θ / 2
lies.
Cosine Half-Angle Identity
cos(θ / 2) = ±√[(1 + cos(θ)) / 2]
- The sign depends on the quadrant in which the angle
θ / 2
lies.
Tangent Half-Angle Identity
tan(θ / 2) = ±√[(1 - cos(θ)) / (1 + cos(θ))]
tan(θ / 2) = sin(θ) / (1 + cos(θ))
tan(θ / 2) = (1 - cos(θ)) / sin(θ)
- The sign depends on the quadrant in which the angle
θ / 2
lies.
Applications
- These identities are particularly useful in calculus for integrating functions involving trigonometric terms.
- They are also used in solving trigonometric equations where angles are halved.
Extended Trigonometric Functions and Identities
4. Additional Details on Trigonometric Functions in Different Quadrants
In addition to knowing the sign of each function in the different quadrants, it’s essential to understand their behavior and how they change with different angles:
First Quadrant (0° to 90° or 0 to π/2 radians)
- Function Behavior: All trigonometric functions are positive. As the angle increases from 0° to 90°, the value of sine increases from 0 to 1, and cosine decreases from 1 to 0. The tangent function increases from 0 to ∞.
- Special Angles: The sine, cosine, and tangent of angles like 30°, 45°, and 60° are commonly used in problems.
Second Quadrant (90° to 180° or π/2 to π radians)
- Function Behavior: Sine is positive while cosine is negative. As the angle increases from 90° to 180°, the sine decreases from 1 to 0, and cosine decreases from 0 to -1. The tangent function decreases from ∞ to 0.
- Special Angles: The values of trigonometric functions for angles like 120° and 150° are often used in applications.
Third Quadrant (180° to 270° or π to 3π/2 radians)
- Function Behavior: Both sine and cosine are negative. As the angle increases from 180° to 270°, the sine increases from 0 to -1, and cosine increases from -1 to 0. The tangent function increases from 0 to ∞.
- Special Angles: Common angles in this quadrant include 210° and 225°.
Fourth Quadrant (270° to 360° or 3π/2 to 2π radians)
- Function Behavior: Sine is negative while cosine is positive. As the angle increases from 270° to 360°, the sine increases from -1 to 0, and cosine increases from 0 to 1. The tangent function decreases from 0 to -∞.
- Special Angles: Key angles include 300° and 315°.
Signs of Trigonometric Functions in Different Quadrants
Quadrant | sin(θ) | cos(θ) | tan(θ) | csc(θ) | sec(θ) | cot(θ) |
---|---|---|---|---|---|---|
First Quadrant (0° to 90°) | Positive | Positive | Positive | Positive | Positive | Positive |
Second Quadrant (90° to 180°) | Positive | Negative | Negative | Positive | Negative | Negative |
Third Quadrant (180° to 270°) | Negative | Negative | Positive | Negative | Negative | Positive |
Fourth Quadrant (270° to 360°) | Negative | Positive | Negative | Negative | Positive | Negative |